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Asymmetry and direction reversal in fluctuation-induced biased Brownian motion
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~Received 2 March 1999!

The biased movement of a Brownian particle in a periodic potential fluctuating between a flat and a kinked
ratchet state, as first studied by Chauwin, Ajdari, and Prost@3#, is examined. The purpose is to study the
physical origin of the frequency-dependent direction reversal of the biased Brownian motion in this system.
We show that the existence of the directional reversal depends not only on the lengths of the projections of the
two ratchet arms on the potential axis~the arm-projection asymmetry!, but also the overall spatial geometry of
the potential in a period. In particular, we show that the direction reversal can be obtained in this kinked ratchet
model even when the two arm projections are equal. Since this two-state model is the simplest to generate
direction reversal and particles can be separated more efficiently in a fluctuating potential if direction reversal
exists, the results obtained in this study should be useful for future application in particle separation.
@S1063-651X~99!08810-8#
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It has been shown theoretically that a Brownian parti
can be made to undergo unidirectional movement in a o
dimensional asymmetric periodic potential if the ‘‘intera
tion’’ between the particle and the potential field is made
fluctuate randomly or regularly among a number of sta
@1–6#. The fluctuation of the interaction can be produc
either by externally switching the potential among a num
of different potential states@1–4# or by changing the inter-
action parameter~such as the charge, if the potential is ele
tric! on the Brownian particle through a nonequilibriu
chemical cycle@5,6#. It has been argued that the motility o
biological motors might be governed by the same mec
nism @7–9#. Recently, this biased Brownian motion has be
proved experimentally@10#. The same device could be ap
plied to the separation of proteins or particles based on t
sizes, electric charges, etc.

To generate biased Brownian motion in a fluctuating
riodic potential, the potential in each period must poss
some sort of asymmetry@1–6#. A simple and widely used
asymmetric potential is the ordinaryratchet potential, in
which the potential in each spatial period is shaped lik
saw-tooth with twounequal straightarms. The potential is
referred to as having an ‘‘arm-projection asymmetry’’ sin
the projections of the two sides of a ratchet on the poten
axis are not equal@see Fig. 1~a!#. It is well known that the net
movement of a Brownian particle in a periodic ratchet p
tential fluctuating randomly between a flat and a nonflat s
~the two-state on-off model! is always biased in one direc
tion, independent of the frequency of the fluctuation@1,2#.

Recently, the study of direction reversal~DR! in
fluctuation-induced biased Brownian motion on asymme
periodic potentials has attracted considerable atten
@3,4,11#. Millonas and Dykman discussed the generation
DR in a stationary periodic potential induced by a Gauss
force noise with a nonwhite power spectrum@11#. Chauwin,
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Ajdari, and Prost have suggested that DR can be obtaine
the two-state ratchet model shown in Fig. 1~a! if the long
arm of the ratchet iskinked, as shown in Fig. 1~b! @3#. Bier
and Astumian also have found DR in a fluctuating three-s
model@4#. These models are potentially very useful becau
DR could lead to more efficient fluctuation-induced sepa
tion of particles @4#. In these models, the arm-projectio
asymmetry was assumed to be necessary for the gener
of DR. Recently, we have shown that biased Brownian m
tion can be obtained for some models without the ar
projection asymmetry@6#. It is therefore interesting to se
whether DR also can be obtained in models without t
asymmetry. In this paper, we show that DR can be produ
in the kinkedtwo-state model of Chauwin, Ajdari, and Pro
no matter whether the value ofa in Fig. 1~b! is larger than,
equal to, or smaller thanb. That is, the arm-projection asym
metry is not necessarily required for this two-state mode

FIG. 1. ~a! Two-state on-off model of a fluctuating periodi
potential. The potential is said to have an ‘‘arm-projection asy
metry’’ when the projections of the two arms of a ratchet on thx
axis,a andb, are not equal.~b! The kinked ratchet model of Chau
win, Ajdari, and Prost@3#.
3771 © 1999 The American Physical Society
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generate the DR phenomenon; the asymmetry of the po
tial caused by the kink at the potential well~at x50! also
plays an important role. First we present the calculatio
demonstrating DR in this kinked two-state ratchet model a
then discuss the physical mechanism underlying the gen
tion of DR.

The mathematical formalism for calculating the transp
flux ~or the average velocity! of Brownian particles in a two-
state on-off model is standard@1,5,6#. Briefly, the steady-
state probabilities@pi(x), i 51,2# of finding a particle lo-
cated atx when the fluctuating potential,V(x), is in statei
are obtained by solving two coupled linear second-order
dinary differential equations,

P19~x!2k1p1~x!1k2p2~x!50, ~1!

P29~x!1V8p28~x!1V9p2~x!1k1p1~x!2k2p2~x!50,
~2!

using the normalization condition that the total probability
particles in one period is unity:

E
0

1

~p1~x!1p2~x!!dx51, ~3!

and periodic boundary conditions for the probability and
flux at the two ends of a period. The transport fluxu then is
given by

u52p182p282V8p2 . ~4!

Since Eqs.~1! and~2! imply u850, the transport flux will be
a constant independent ofx. For an arbitraryV(x), Eqs.~1!
and ~2! can be solved approximately using a ‘‘finite diffe
ence’’ method@5,6#. This method requires large comput
memory and computing time. On the other hand, for pie
wise linear periodic potentials, Eqs.~1! and~2! can be solved
using the eigenvalue-eigenfunction method@1,2#. This
method can generate more accurate numerical results
less computing time and is used in this study@12#. Before
presenting the calculation results, we emphasize that the
rametersV,x,u, and theki have been made dimensionle
and are related to their corresponding physical quanti
~signified by a bar! by V5V̄/kBT; x5 x̄/L; u5ūL/D; ki

5 k̄iL
2/D whereL is the length of the period of the potentia

D is the diffusion coefficient of the particle, andkBT is the
product of the Boltzmann constant and the temperat
Thus, it is obvious thata1b51 @this is the reason why the
integration in Eq.~3! is from 0 to 1#. Furthermore, the di-
mensionless rate constantsk1 and k2 are not the same fo
different particles if they have different diffusion coeffi
cients. This is exactly the reason why particles with differe
diffusion coefficients can be separated in this system@4#.

There are many ways to modulate the average freque
of the fluctuation of the potential in a two-state model. F
example, one could keep one rate constant in Fig. 1~a! fixed
and vary the other or vary both rate constants simu
neously. From preliminary calculations we found that t
existence of DR is more related to the value ofk2 thank1 .
This may be due to the fact that particles can execute
biased movement only when the potential is in state 2. Th
only k2-dependent transport fluxes are considered in
n-
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study. That is, with any given potentialV(x) ~characterized
by the values ofa, V1 , andV0!, the transport flux~or the net
velocity of the Brownian particle! of the system is calculated
and expressed as a function ofk2 at fixedk1 . In all calcula-
tions, V0 was set to 10 and three arm-projection asymme
parameters were considered:a50.6, 0.5, and 0.48. The
calculatedu(k2) curves for a number ofV1 values atk1
50.01 are shown in Figs. 2~a! and 2~b! for a50.5 and 0.48,
respectively. The curves fora50.6 are qualitatively very
similar to those in Fig. 2~a! and therefore are not shown. Th
k2 at which the transport flux changes sign (k2* ) can be ob-
tained from the curves in Figs. 2~a! and 2~b! and are plotted
in Fig. 2~c! as a function ofV1 . The same set of calculation

FIG. 2. ~a!. Transport fluxes calculated directly from Eqs.~1!
and ~2! at different kink height (V1) for a50.5 andk150.01. The
value ofV1 is indicated by each curve. The curves atV150.8 and
0.5 are not shown in the figure; only the positions of the direct
reversal~the intercepts! are indicated. The dotted curve is forV1

54 andk1510. As can be seen, the reversalk2 is not very sensitive
to the value ofk1 . ~b! The calculatedu for a50.48 at differentV1 .
For V150.85 and 0.845, only the intercept is shown in the figu
~c! The direction reversal frequency at which the transport fl
changes sign~the reversal frequency! as a function ofV1 at differ-
ent a values.k1 is 0.01 for the solid curves and 10 for the dotted
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also were done fork1510 ~a thousandfold increase!. The
results are shown as dotted curves in Figs. 2~a! and 2~c!.
Several conclusions can be drawn from these calculations~i!
Direction reversal~DR! can be obtained in this two-stat
kinked ratchet model even when the arm-projection asym
try is absent@see Fig. 2~a!#, in contrast to what was sug
gested by the theory of Chauwin, Ajdari, and Prost@3#; ~ii !
For a large kink height~largeV1!, the flux is mostly positive
and k2* decreases rapidly asV1 increases~i.e., k2* is very
sensitive toV1!, irrespective of the value ofa; ~iii ! At small
V1 , the flux is mostly negative and, asV1 decreases, the
value ofk2* increases as a function ofV1 if a>0.5 and de-
creases ifa,0.5 @see the arrows in Figs. 2~a! and 2~b!#. That
is, as shown in Fig. 2~c!, the V1-k2* curve at smallV1 for
a>0.5 is quite different from that fora,0.5. In fact, direc-
tion reversal does not exist for thea,0.5 case ifV1 is
smaller than a limiting value;~iv! There exists a range ofV1
in which u(k2) contains both positive and negative amp
tudes and the value ofk2* changes slowly asV1 is varied.
This range ofV1 is therefore most suitable for particle sep
ration; ~v! As shown in Fig. 2~c!, almost identicalV1-k2*
curves are obtained when the value ofk1 is increased 1000
times from 0.01 to 10, showing that the generation of DR
mostly controlled byk2 , not k1 .

In the following, we show that the existence of DR
small k1 as found in the calculations can be predicted us
an approximate ‘‘deterministic’’ physical theory. For th
two-state kinetic system in Fig. 1~a!, theaveragetime for the
potential to stay in states 1 and 2 are constant and equ
t151/k1 and t251/k2 , respectively. Thus, in this theory th
potential is treated approximately as if it were oscillati
regularly between states 1 and 2 with constant times of
ration of t1 andt2 . The distribution of particles on thex axis
of the potential within each spatial period will be time d
pendent due to the translocation~or displacement! of the
particles. At steady state~after the system has undergone
large number of oscillations!, the distribution functions in
both states 1 and 2 become invariant from one oscillation
the other, but are still time dependent. The net transloca
of all particles in one spatial period int2 when the potential
is in state 2 determines the steady-state transport flux of
system@3#. Thus, to see whether thek2-dependent DR occur
in the system, one needs only to compare the signs of the
steady-state translocation of particles in one potential pe
at large and smallt2 : DR is guaranteed to occur if the sign
at these two extremes are different.

If the movement of an overly damped particle in a pote
tial field is treated classically without considering the th
mal fluctuation effect, thevelocityof the particle is equal to
2r(x)/g where r(x) is the slope of the potential@r(x)
5dV(x)/dx# at x and g is the friction coefficient of the
particle. Let us consider the spatial period betweenx52b
andx5a as shown in Fig. 1~b!. The slopes on thea andb
sides of the potential are constant and can be expressed

ra5~V02V1!/a, rb52V0 /b. ~5!

Let ta andtb denote the average time for a particle to diffu
to the potential minimum atx50 from the potential peaks a
x5a andx52b, respectively. Then, we have
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ta52a/~2ra!5a2/~V02V1!, tb5b/~2rb!5b2/V0 ,
~6!

where the value ofg has been set to unity for simplicity. Le
us assume that the time to stay in state 1 is very long~k1 is
very small! so that the particles on thex axis can be consid-
ered as uniformly distributed att50 when the potential is
switched from state 1 to state 2. Then, whent(5t2) is
smaller than eitherta or tb , the total translocation~or the
distance of movement! of particles on the two sides of th
potential well can be expressed separately as

Sa52~rat !2/22~a2rat !rat52arat1~rat !2/2, ~7!

Sb5~rbt !2/22~b1rbt !rbt52brbt2~rbt !2/2, ~8!

where positive means translocation to the right and nega
to the left. Note that the first term of the expression on
right-hand side of the first equal sign in Eqs.~7! or ~8! rep-
resents the average translocation of particles that have m
to the potential minimum~at x50! in time t, while the sec-
ond term represents the translocation of the particles stil
the slope. For sufficiently smallt(5t2), the net translocation
of particles in one spatial period then can be evaluated a

S05Sa1Sb5V1t1O~ t2! as t→0, ~9!

where Eq.~5! has been used to eliminatera andrb . Thus,
for any nonzeroV1 , the net translocation of particles at sma
t2 is always positive@toward the right in Fig. 1~a!# no matter
whethera is larger than, equal to, or smaller thanb. Then, if
the net translocation of particles can be proved to be nega
at larget2 ~or smallk2!, the occurrence of DR in this mode
is guaranteed.

When t2 is infinitely large (k250), all the particles will
reach an equilibrium distribution determined by the pote
tial. In this case, the net translocation of the particles is eq
to the difference of the ‘‘center of mass’’ of the particles in
spatial period between the final (t5`) and the initial (t
50) distributions. It is easy to see that for a uniform dist
bution the center of mass att50 is located at the midpoin
between 2b and a, m05(a2b)/2. Let f (x)
[C exp@2V(x)# denote the equilibrium distribution of par
ticles in one spatial period at larget where C51/*2b

a exp
@2V(x)#dx is the normalization constant. Then the center
mass at larget is located at

m`5E
2b

a

x f~x!dx ~10!

and the net translocation of particles in the period betw
x52b andx5a can be expressed as

S`5m`2m05E
2b

a

x f~x!dx2~a2b!/2. ~11!

Thus, DR occurs ifS` is negative. With given values ofV1 ,
V0 anda for the kinked linear ratchet potential in Fig. 1~b!,
the evaluation ofS` in Eq. ~11! is straightforward. The cal-
culatedS` at differenta values are plotted as a function o
V1 in Fig. 3. As can be seen from the figure,S` is always
negative, independent ofV1 , whena>0.5. In this case, DR
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is always present in the system. One must note that
conclusion is not affected by the value ofV0 . When a
,0.5,S` may be negative or positive depending on the v
ues ofa andV1 . As shown in Fig. 3, whena<0.444,S` is
always positive, independent ofV1 . In this case, no DR is
expected. On the other hand, when 0.444,a,0.5, DR is
possible ifV1 is large enough. For example, DR can be o
tained for thea50.48 case ifV1 is larger than 0.83. This
explains the limitingV1 in the reversal frequency shown i
Fig. 2~c! for a50.47 and 0.48, as discussed above.

Thus, based on a simple physical argument, a rule is
tained for the prediction of the existence of DR for t
fluctuation-induced movement of Brownian particles in
two-state periodic potential with kinked ratchets. With a
given kinked ratchet@characterized by the values ofa ~and
thereforeb!, V1 andV0#, one simply calculates theS` in Eq.
~11! and examines its sign. If the sign ofS` is positive, DR
may or may not be present. But, if the sign ofS` is negative,
DR is definitely present.

The finding that DR can be obtained in this model ev
whena5b implies that the ‘‘arm-projection’’ asymmetry i
not a necessary condition for the kinked ratchet mode
Chauwinet al. to generate DR. Chauwin, Ajdari, and Pro
did not reach the same conclusion, because they faile
take into account the net translocation caused by the di
bution of particles after they reach the bottom of the pot
tial well. As will be shown elsewhere, DR also can be ge
erated for this two-state model even when the kink in F
1~b! is not vertical, but tilted.

The above physical theory can also be used to exp
why the particle movement is unidirectional~no direction
reversal! in the ordinary~nonkinked! ratchet potential in Fig.
1~a! as found before in@1,2#. SinceV150 in that case, the
net translocation at smallt(5t2) can be obtained from Eqs
~7! and~8! asS05 1

2 (V0t/ab)2 (b2a). Thus, whenb.a ~or
a,0.5!, S0 is positive. From Fig. 3,S` at V150 is also
positive in this case. As a result, there is no DR and
biased movement is always in the positivex direction. Simi-
larly, when a.b (a.0.5), both S0 and S` are negative,

FIG. 3. S` evaluated from Eq.~11! for different a values as a
function ofV1 . For the model to generate DR, the sign ofS` has to
be negative.
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implying a unidirectional movement of the particle in th
negativex direction.

The approximate deterministic theory can be also app
to simulate semiquantitatively the entire transport cur
When the value ofk1 is constant, the transport flux of th
system,u(k2), can be evaluated approximately asu(k2)
5S(t)/(t11/k1), wherek2[1/t andS(t) is the net translo-
cation of particles in a spatial period at timet after the po-
tential is switched~from state 1! to state 2. To evaluateS(t),
one has to divide the timet into three domains characterize
by the ta and tb in Eq. ~6!: t,tb,ta , tb,t,ta , and t
.ta.tb ~see @3#!. The transport flux calculated withk1
50.01 anda5b50.5 are shown in Fig. 4 forV153 and 4.
As expected, the theory does produce DR correctly. But,
theoretical and the exact flux curves do not agree quan
tively. The deviations may come from four factors. First, t
value ofk1 is not equal to zero as assumed in the theory. I
possible that better agreement could be obtained ifk1 is re-
duced. Second, the translocation of particles in state 2
treated as a ‘‘deterministic’’ dynamic process in the theo
That is, only the downhill translocation of particles is co
sidered. As a result, particles are not allowed to jump fr
one spatial period to the other. In a ‘‘stochastic’’ treatme
~the exact solution!, up-hill translocations and jumping ove
hills are allowed. How this factor contributes to the deviati
is not known. Third, the particles that have translocated
the bottom of the potential well may not reach an equil
rium distribution as assumed in the theory. In general,
equilibrium distribution is reached only at long time~or at
smallk2!. This may be the reason why deviations seem to
smaller at smallk2 , as shown in Fig. 4. Fourth, substitutin
a randomly fluctuating potential with a regularly oscillatin
one may also contribute to the deviation.

In conclusion, we have shown that the direction of t
biased movement of Brownian particles in the two-st
model of Chauwin, Ajdari, and Prost with kinked ratch
potentials can be easily changed by changing the freque
of the fluctuation, irrespective of the existence of the ar
projection asymmetry in the potential. The existence o
kink at the trough of the potential~at x50! is necessarily

FIG. 4. u(k2) evaluated atV153 and 4 using the approximat
theory~the dotted lines! are compared with those evaluated exac
in Fig. 2~a!. The values ofa andk1 are 0.5 and 0.01, respectively
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required for this frequency-dependent direction reversal.
existenceof direction reversal in this model can be predict
by a simple ‘‘deterministic’’ physical theory, although th
theory may not be able to reproduce quantitatively the en
flux curve. The results obtained in this study should be us
v

e

e
ul

in designing devices for particle separation based on po
tial fluctuation.
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